

Active Learning of Deterministic Timed Automata with Myhill-Nerode Style Characterization

<u>Masaki Waga</u>

Kyoto University

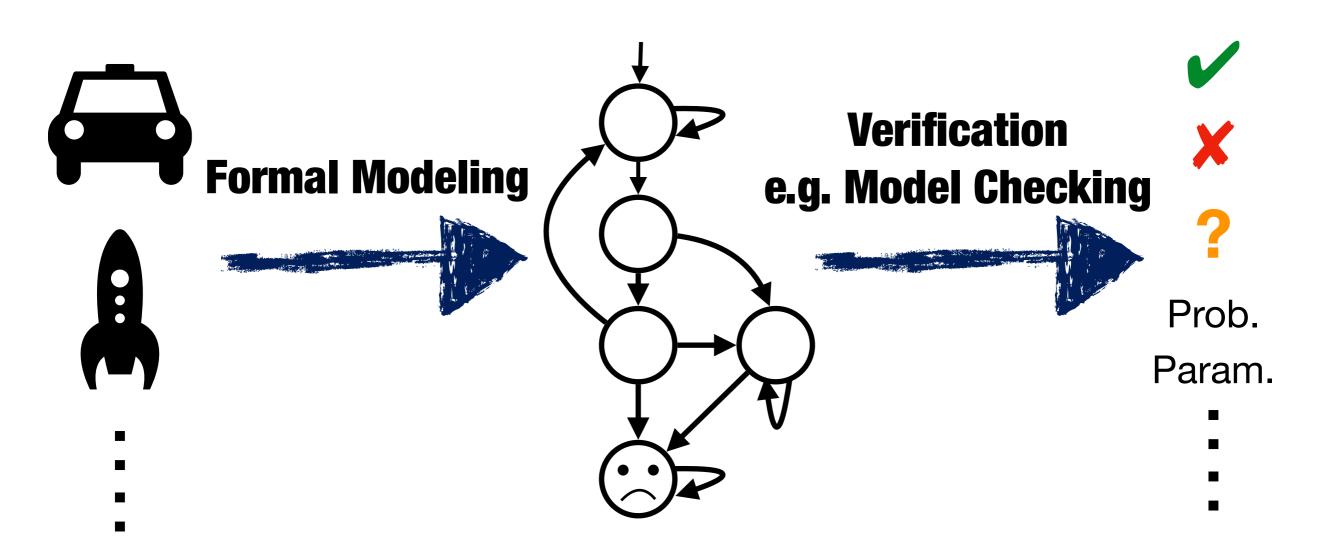
21st September 2023, FORMATS 2023 Originally presented at CAV 2023

This work is partially supported by JST ACT-X Grant No. JPMJAX200U, JST PRESTO Grant No. JPMJPR22CA, JST CREST Grant No. JPMJCR2012, and JSPS KAKENHI Grant No. 22K17873.

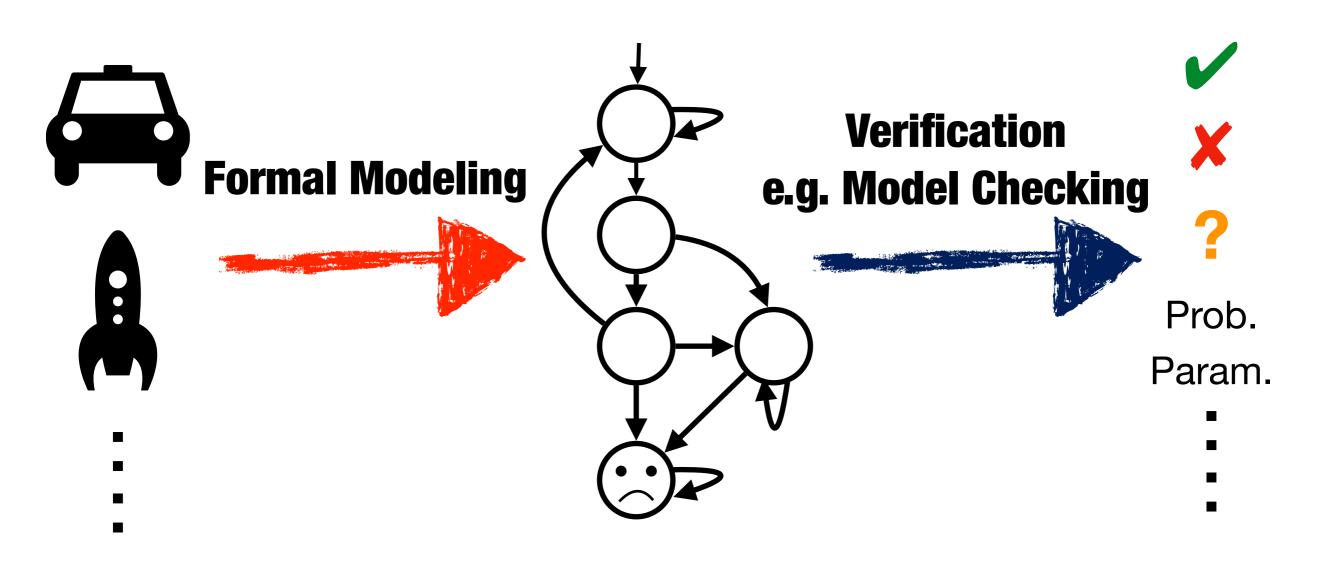
京都大学

KYOTO UNIVERSITY

Formal modeling is essential

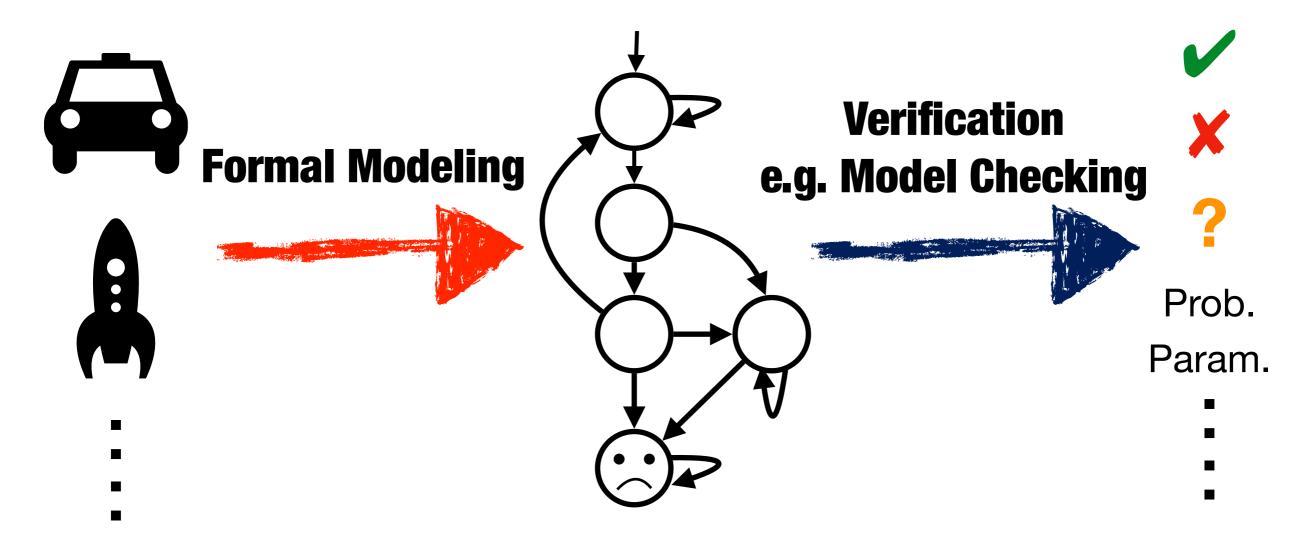


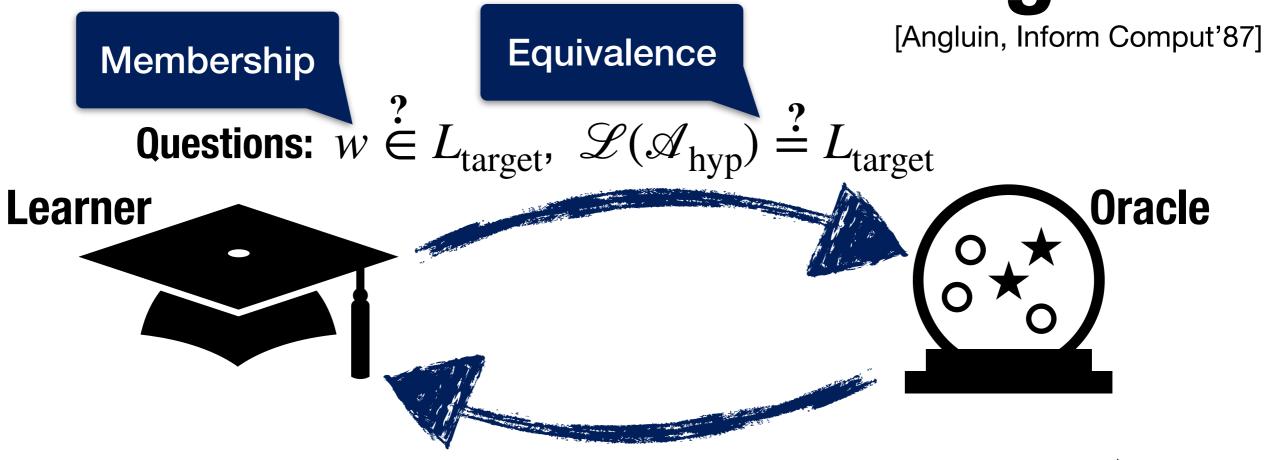
Formal modeling is essential but usually difficult



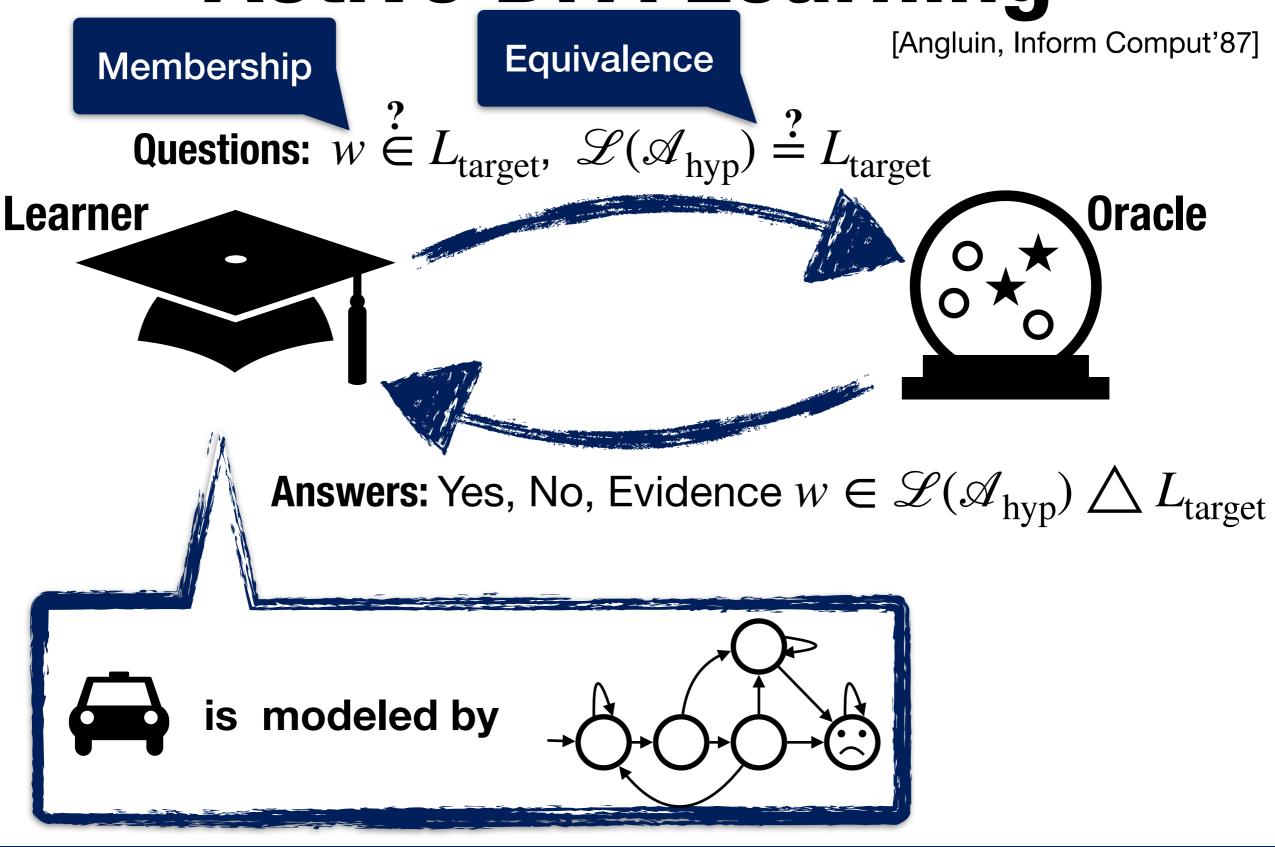
Formal modeling is essential but usually difficult

Q. How about automatically learn a formal model?

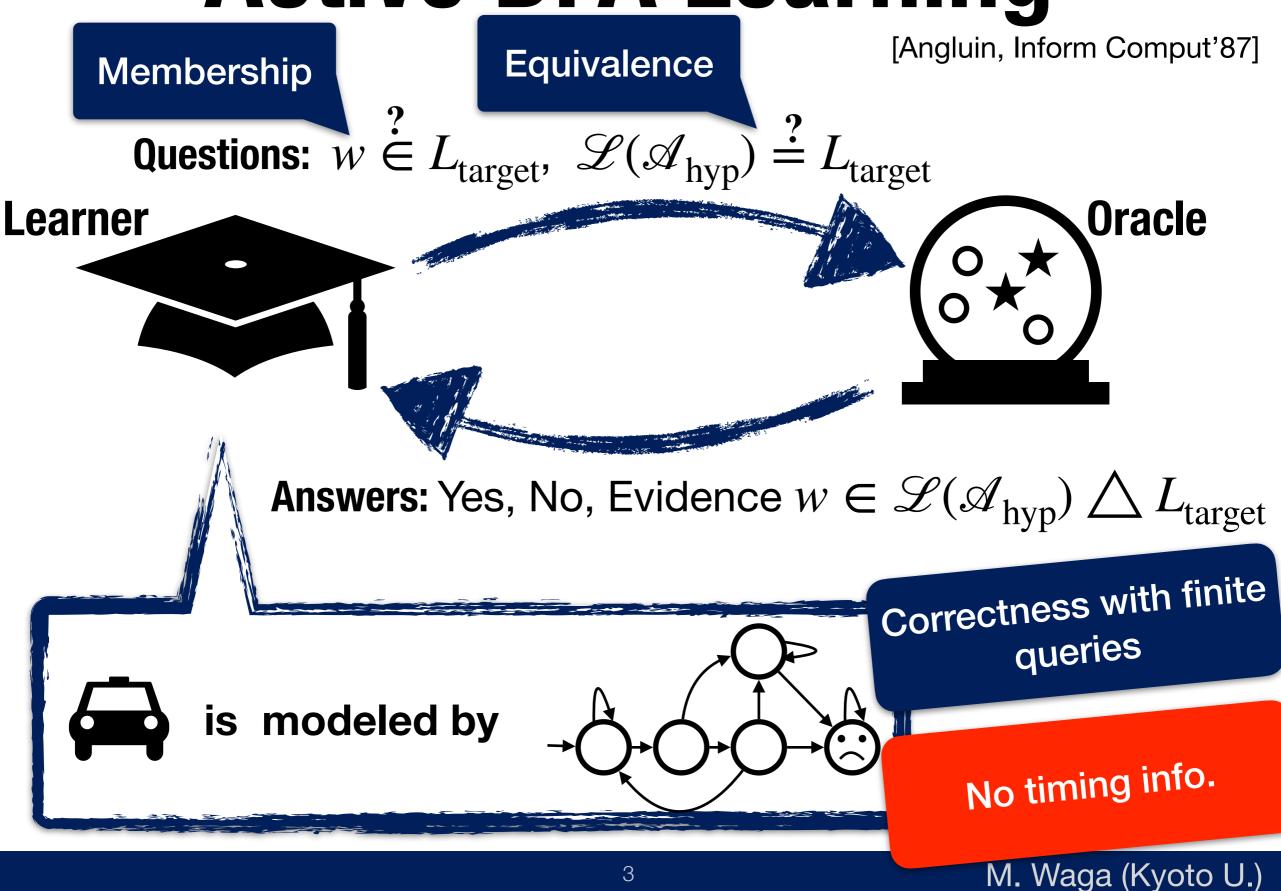




Answers: Yes, No, Evidence $w \in \mathscr{L}(\mathscr{A}_{hyp}) \bigtriangleup L_{target}$



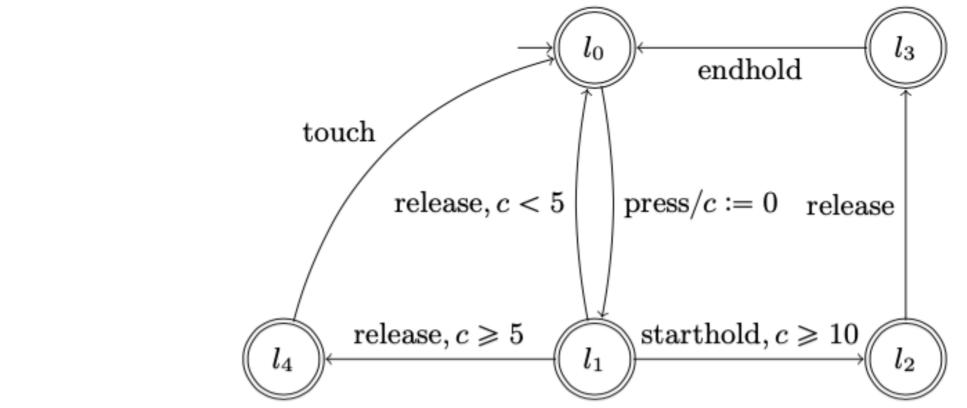




It's Time to Learn Time!

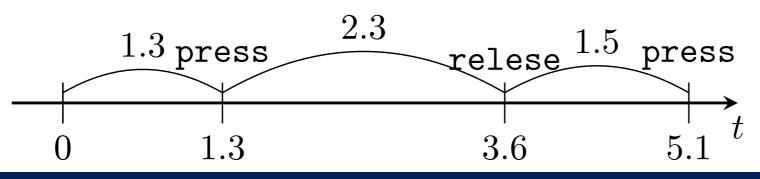
Timed Automata/Words [Alur & Dill, TCS'94]

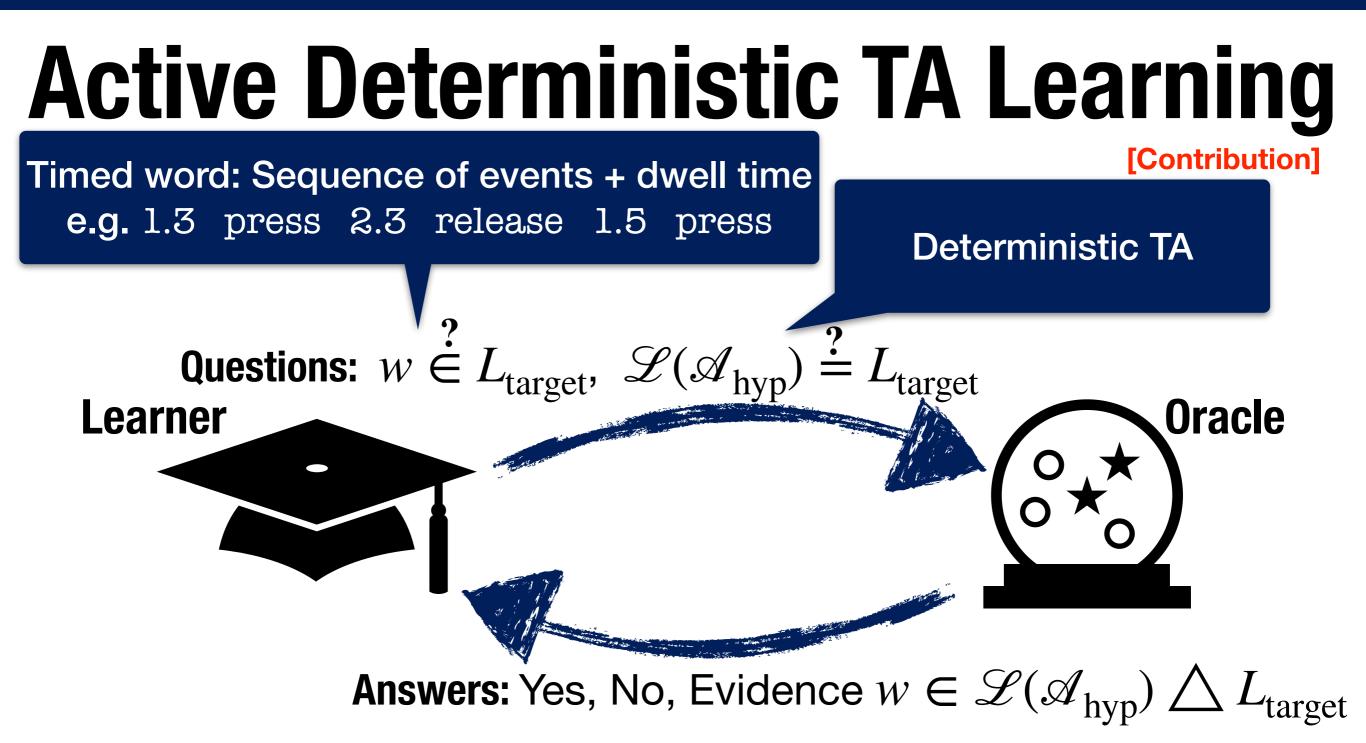
TA: NFA + timing constraints by clocks, guards, resets

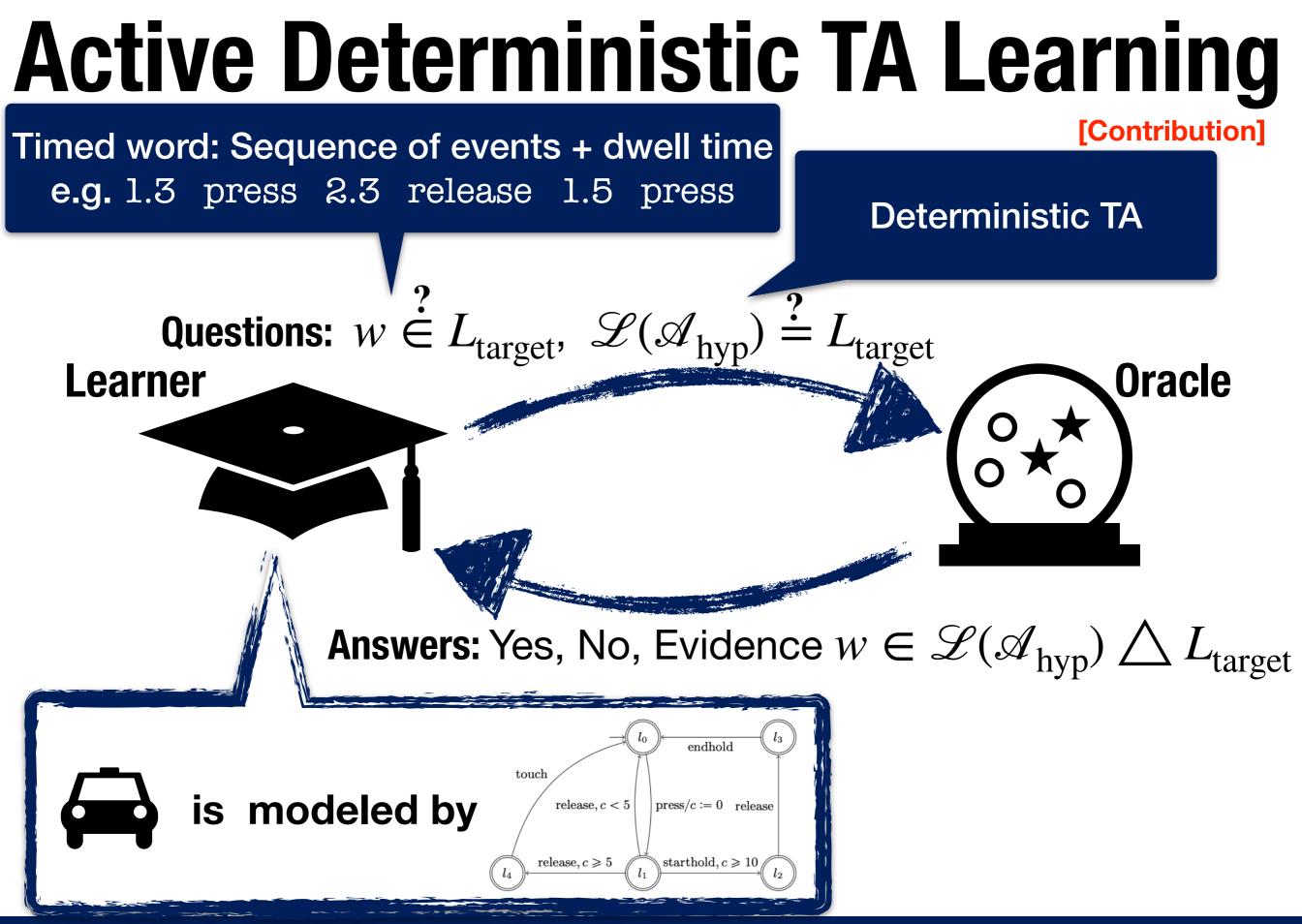


Timed word: Sequence of events + dwell time

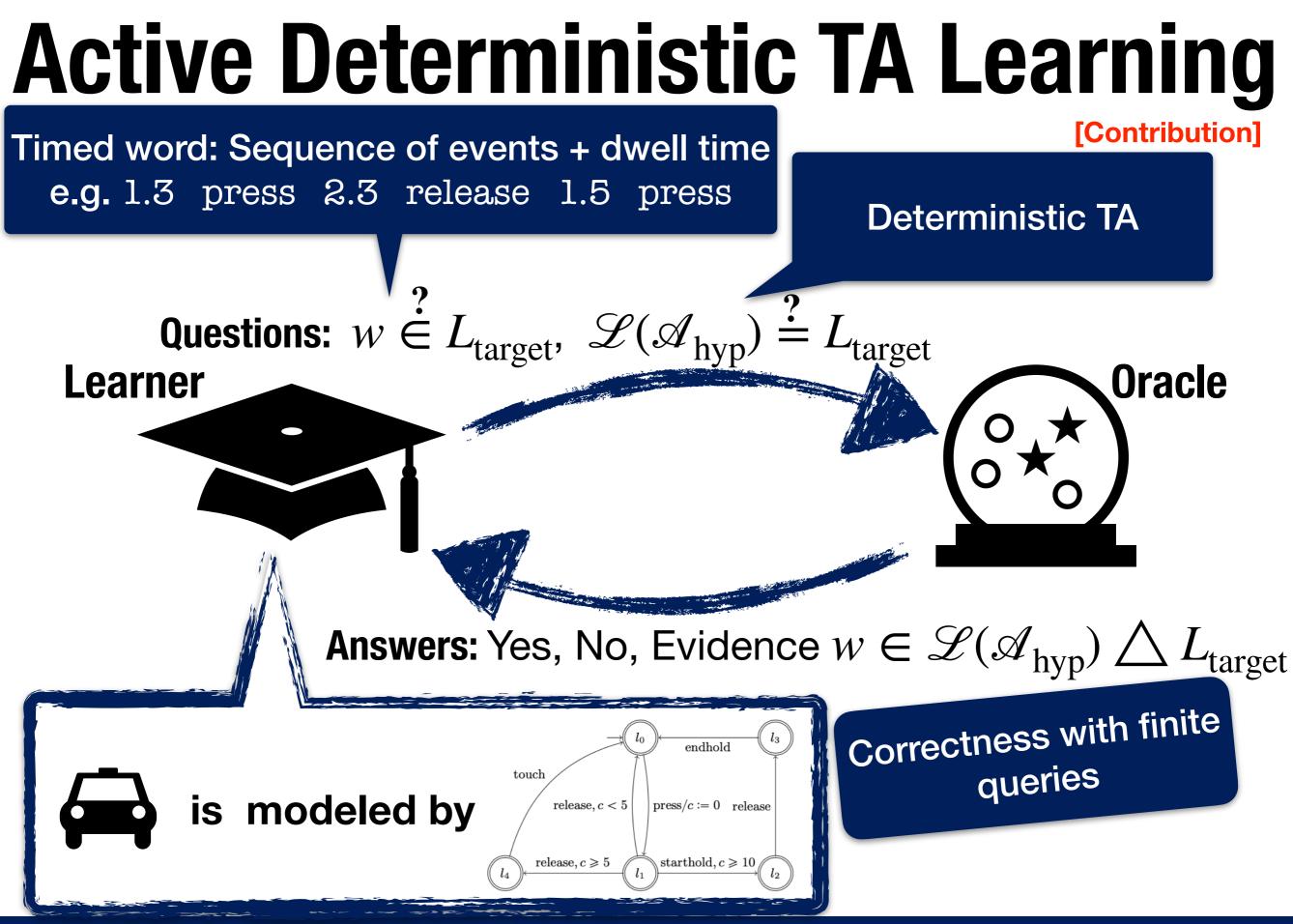
• e.g. 1.3 press 2.3 release 1.5 press



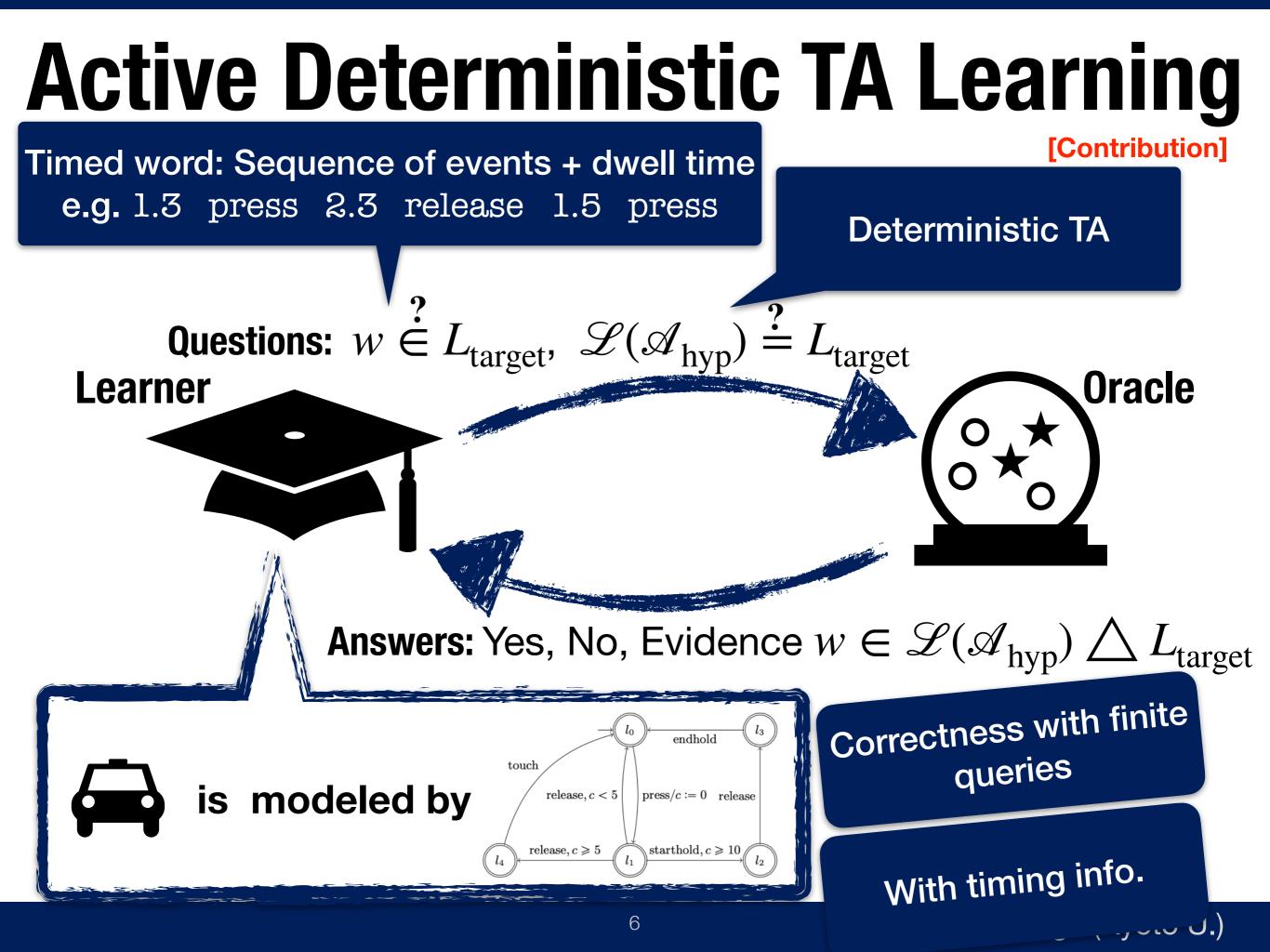




M. Waga (Kyoto U.)



M. Waga (Kyoto U.)



Slogan: Learn Autom. via Finiteness

L* algorithm for DFAs

[Angluin, Inform Comput'87]

<section-header><section-header><text><text>

Myhill-Nerode theorem Finite characterization of regular lang. L*_{Timed} algorithm for DTAs

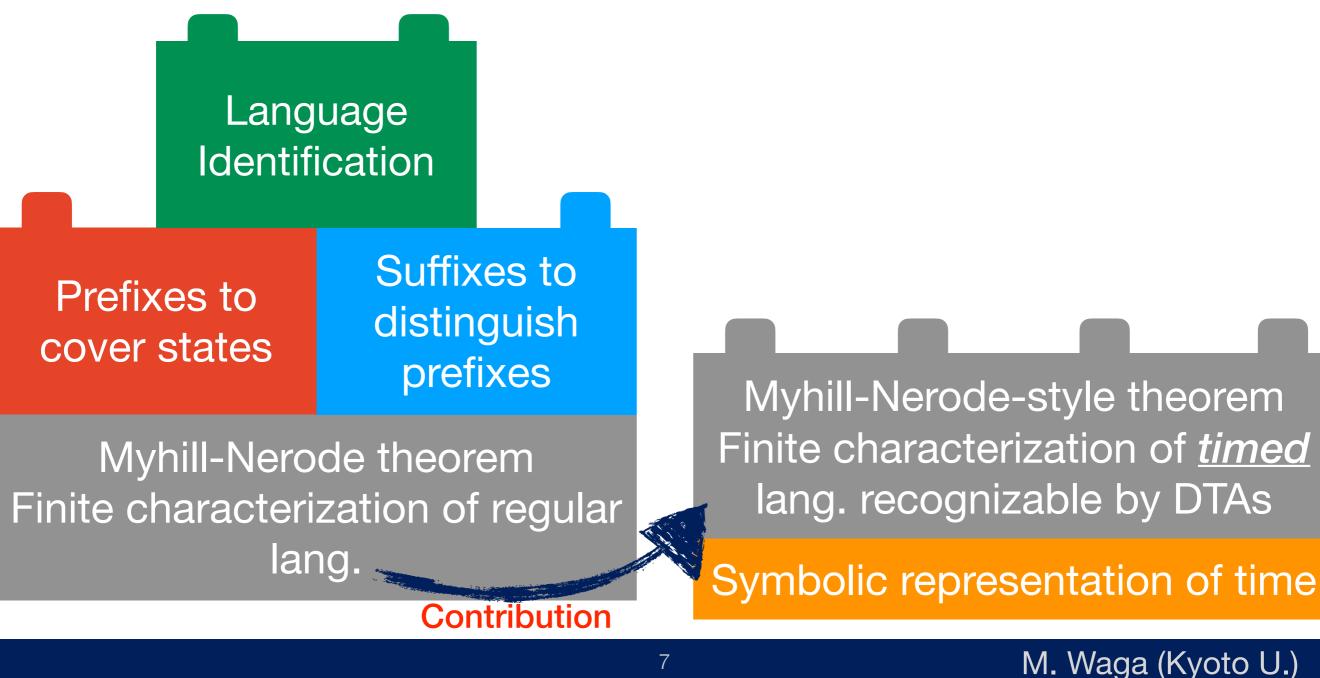
[Contribution]

Slogan: Learn Autom. via Finiteness

[Angluin, Inform Comput'87]

L*_{Timed} algorithm for DTAs

[Contribution]



Slogan: Learn Autom. via Finiteness

L* algorithm for DFAs

[Angluin, Inform Comput'87]

L*_{Timed} algorithm for DTAs

[Contribution]

Prefixes to cover states

Suffixes to distinguish prefixes

Myhill-Nerode theorem Finite characterization of regular lang.

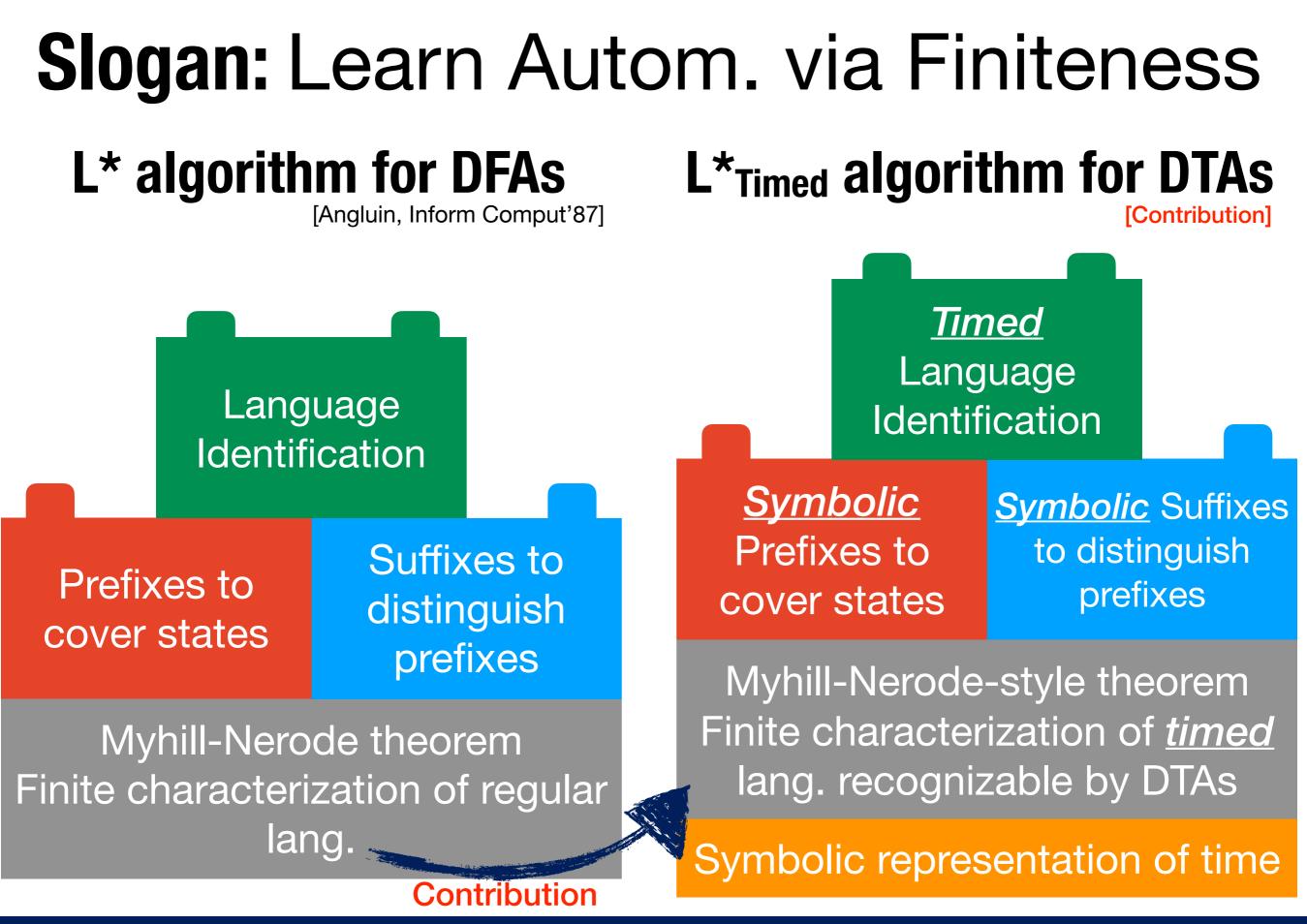
Contribution

Symbolic Prefixes to cover states

Symbolic Suffixes to distinguish prefixes

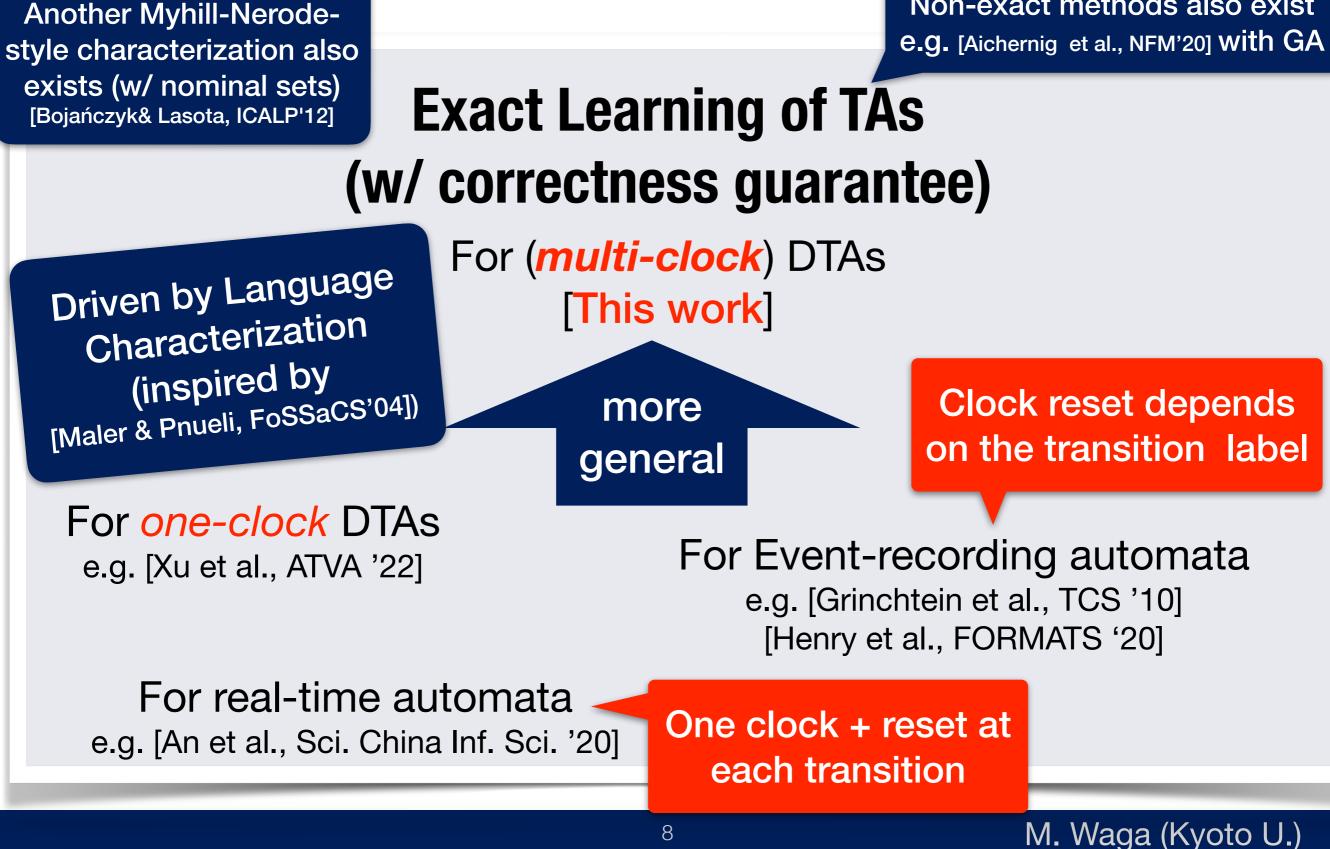
Myhill-Nerode-style theorem Finite characterization of <u>timed</u> lang. recognizable by DTAs

Symbolic representation of time



NOT the First Time to Learn Time!

Non-exact methods also exist



Contributions

- Myhill-Nerode-style characterization to the timed languages recognizable by DTAs
 - Idea: symbolic handling of timing constraints
- L*-style learning algorithm for DTAs
- Implementation + experiments
 → Works for some practical benchmarks, e.g., FDDI

Outline

- Quick Review: L* algorithm for DFA learning
 - Focusing on Myhill-Nerode theorem & Nerode's congruence
- Active learning of timed lang. recognizable by DTAs
 - Myhill-Nerode-style characterization for timed lang.
 - How the algorithm is extended
- Experiments

Nerode's congruence

Nerode's congruence (\equiv_L **)**: For

- language: $L \subseteq \Sigma^*$
- prefixes: $p, p' \in \Sigma^*$

 $p \equiv_L p'$ iff. $\forall s \in \Sigma^* . p \cdot s \in L \iff p' \cdot s \in L$

e.g. for
$$L = (ab)^*, \varepsilon \equiv_L ab$$
, $a \equiv_L aba$, ...
Accepted iff $s \in (ab)^*$ Accepted iff $s \in b(ab)^*$

✓: Easy to construct \mathscr{A} s.t. $\mathscr{L}(\mathscr{A}) = L$ from \equiv_L

- Idea: Use Σ^*/\equiv_L as the state space

X: Requires *infinite* comparison to check if $p \equiv_L p'$

Learn. Lang. via approx. congruence

Idea: approx. \equiv_L by \approx_L^S with finite suffixes $S \subseteq \Sigma^*$

e.g. $\varepsilon \approx_L^{\{\varepsilon, b\}}$ ab iff $\forall s \in \{\varepsilon, b\} \varepsilon \cdot s \in L \iff ab \cdot s \in L$

✓: Requires *finite* comparison to check if $p \approx_L^S p'$

- \checkmark : Still, easy to construct \mathscr{A} from \approx_L^S
 - Idea: Use P/\approx_L^S as the state space for prefixes $P \subseteq \Sigma^*$.

 \checkmark : Finite S is enough for regular lang.

• By Myhill-Nerode theorem (Σ^* / \equiv_L is finite if *L* is regular)

Learn. Lang. via approx. congruence

Idea: approx. \equiv_L by \approx_I^S with finite suffixes $S \subseteq \Sigma^*$

e.g. $\varepsilon \approx_{I}^{\{\varepsilon, b\}}$ ab iff $\forall s \in \{\varepsilon, b\} \varepsilon \cdot s \in L \iff ab \cdot s \in L$

✓: Requires *finite* comparison to check if $p \approx_I^S p'$

 \checkmark : Still, easy to construct \mathscr{A} from \approx_{I}^{S}

• Idea: Use P/\approx_I^S as the state space for prefixes $P \subseteq \Sigma^*$.

 \checkmark : Finite S is enough for regular lang.

prefixes

• By Myhill-Nerode theorem (Σ^* / \equiv_L is finite if L is regular)

Suffixes to Prefixes to distinguish cover states

L* algorithm for Active DFA Learning

[Angluin, Inform Comput'87]

- 1. Systematically refine prefixes P and suffixes S
 - e.g. Refine if contradiction is found
- 2. Test equiv. of $p, p' \in P$ wrt *S* by mem. questions
- 3. Make \mathscr{A}_{hyp} if $P / \approx_{L_{target}}^{S}$ is constructed w/o contradiction → Use equiv. question to test the correctness
- 4. Evidence of $\mathscr{L}(\mathscr{A}_{hyp}) \neq L_{target}$ is used to refine P \rightarrow Back to 1. Membership Questions: $w \in L_{target}$, $\mathscr{L}(\mathscr{A}_{hyp}) \stackrel{?}{=} L_{target}$ \mathcal{L}_{target} Answers: Yes, No, Evidence $w \in \mathscr{L}(\mathscr{A}_{hyp}) \triangle L_{target}$

Outline

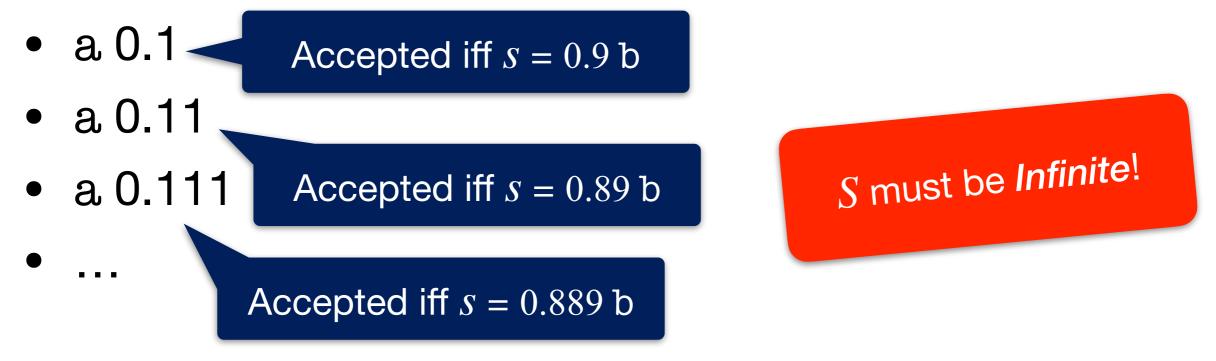
- Quick Review: L* algorithm for DFA learning
 - Focusing on Myhill-Nerode theorem & Nerode's congruence
- Active learning of timed lang. recognizable by DTAs
 - Myhill-Nerode-style characterization for timed lang.
 - How the algorithm is extended
- Experiments

Focusing on this characterization

Challenge 1: Time is continuous!

Observation: Nerode's congruence on timed words **does not work** for learning

Example: For $L = \{a \ 1 \ b\}$, the following must be distinguished



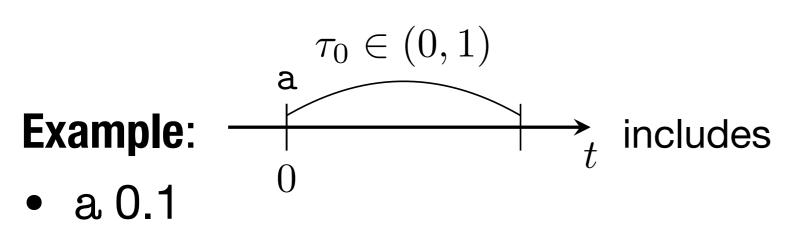
Gadget 1: Elementary Languages

[Maler & Pnueri, FoSSaCS'04]

Use symbolic representation of time

Elementary language: Timed language defined by

- word
- Intervals on the durations between events



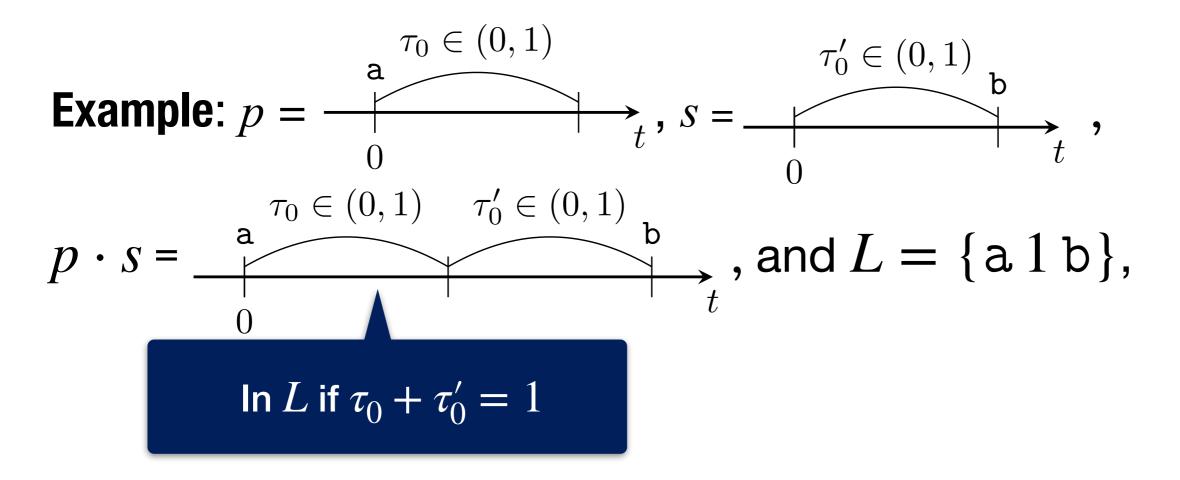
- a 0.11
- a 0.111

Challenge 2: Membership is inconsistent

The notion of "membership" must be updated!!

Observation:

We may not have $p \cdot s \subseteq L$ nor $p \cdot s \cap L = \emptyset$

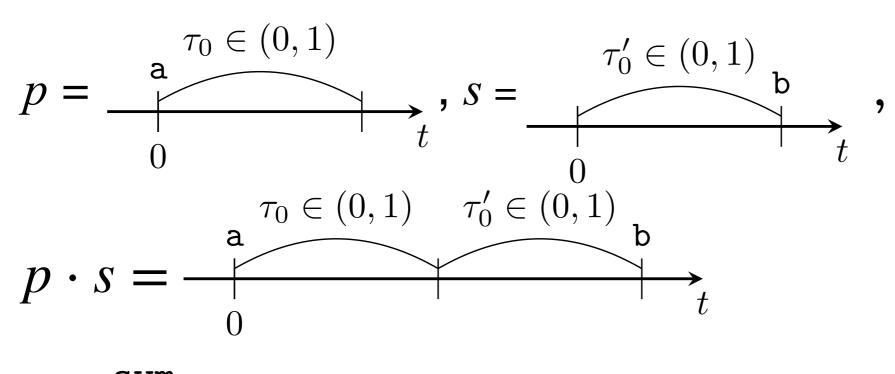


Gadget 2: Symbolic Membership

Use the condition to be included

<u>Def.</u> For timed lang. $L, L', \operatorname{mem}_{L}^{\operatorname{sym}}(L')$ is the strongest constraint s.t. $\forall w \in L' . w \in L \iff w \models \operatorname{mem}_{L}^{\operatorname{sym}}(L')$

Example: For $L = \{a \ 1 \ b\},\$



$$\operatorname{mem}_{L}^{\operatorname{sym}}(p \cdot s) \text{ is } \tau_{0} + \tau_{0}' = 1$$

[Contribution]

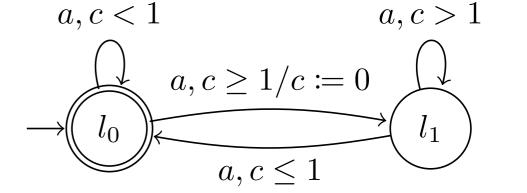
M. Waga (Kyoto U.)

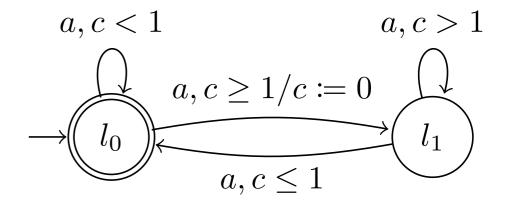
Challenge 3: Direct comparison is too fine

Clock valuations: w = 0.5 a

w′ = 0.3 a 0.2 a

Symbolic membership:





$a,c \geq 1/c \coloneqq 0$

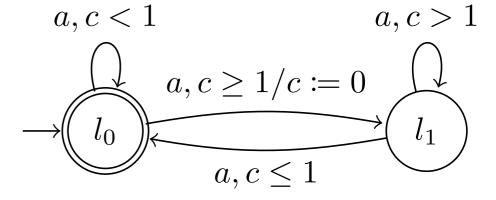
Challenge 3: Direct comparison is too fine

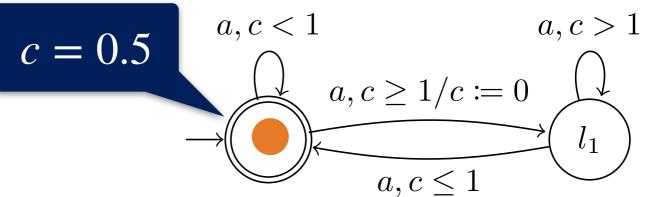
$$w' = 0.3 a 0.2 a$$

Clock valuations:

w = 0.5 a

Symbolic membership:



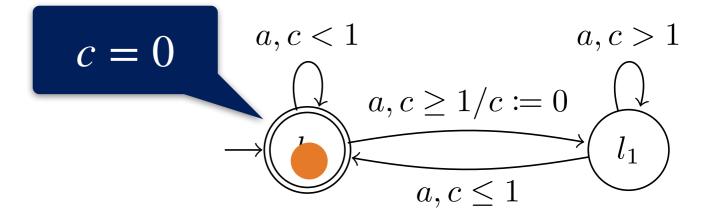


c = 0.5

a, c < 1

w′ = 0.3 a 0.2 a

w = 0.5 a



a, c > 1

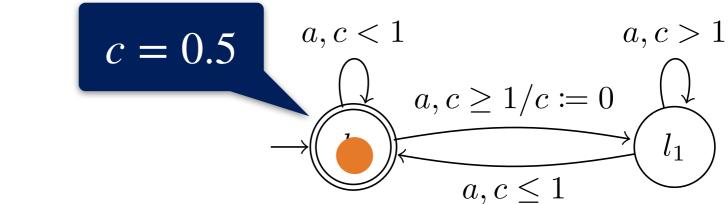
$a, c \ge 1/c \coloneqq 0$ l_1 $a, c \le 1$

Symbolic membership:

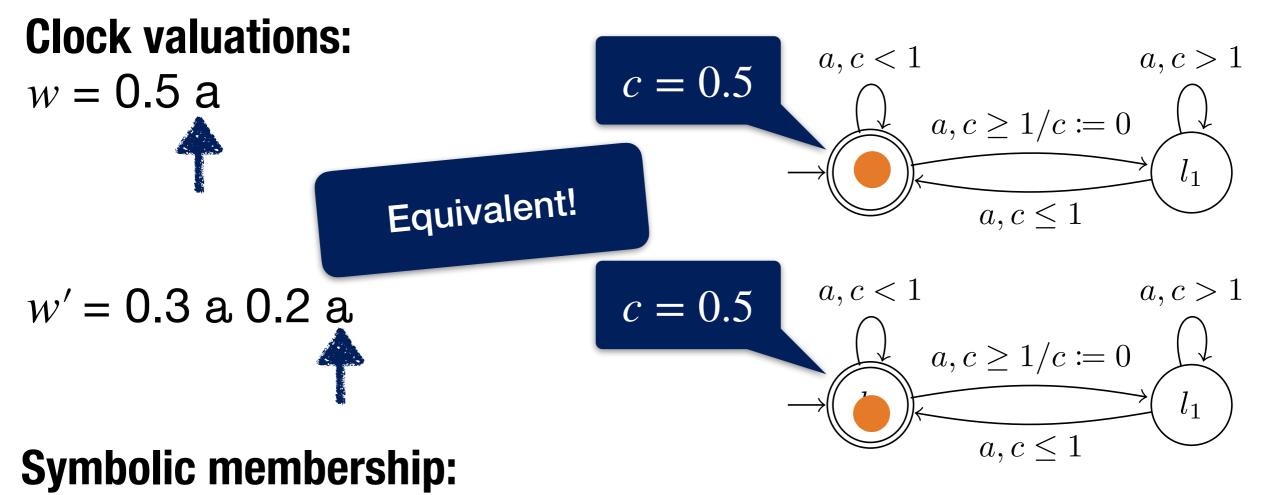
w' = 0.3 a 0.2 a

w = 0.5 a

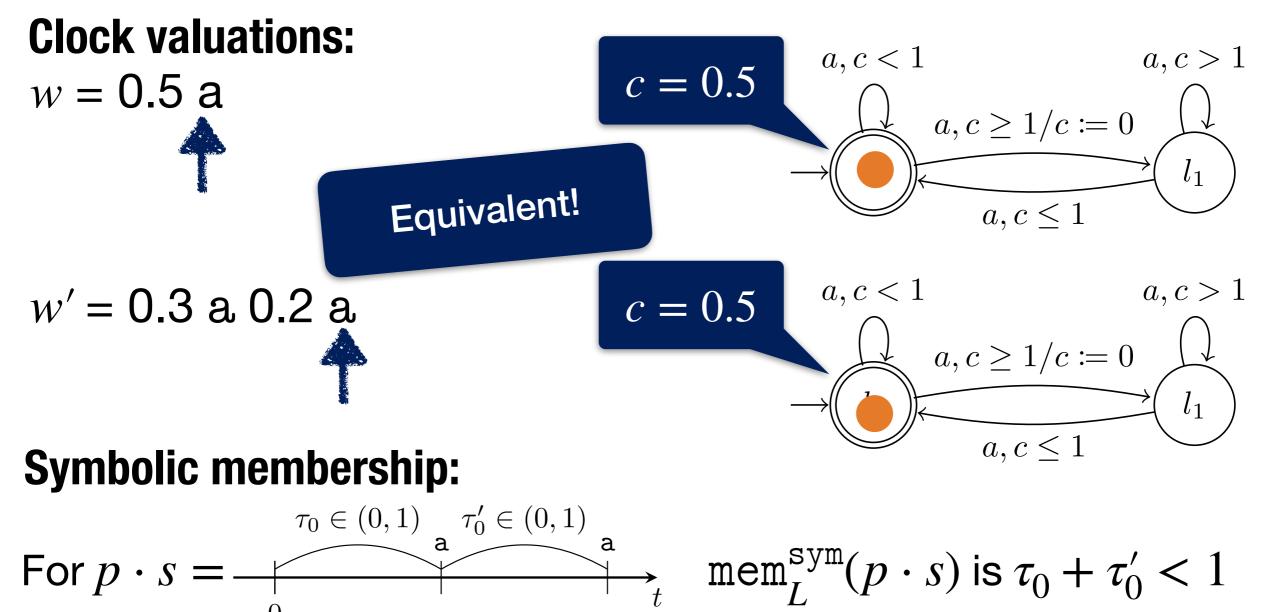
c = 0.5



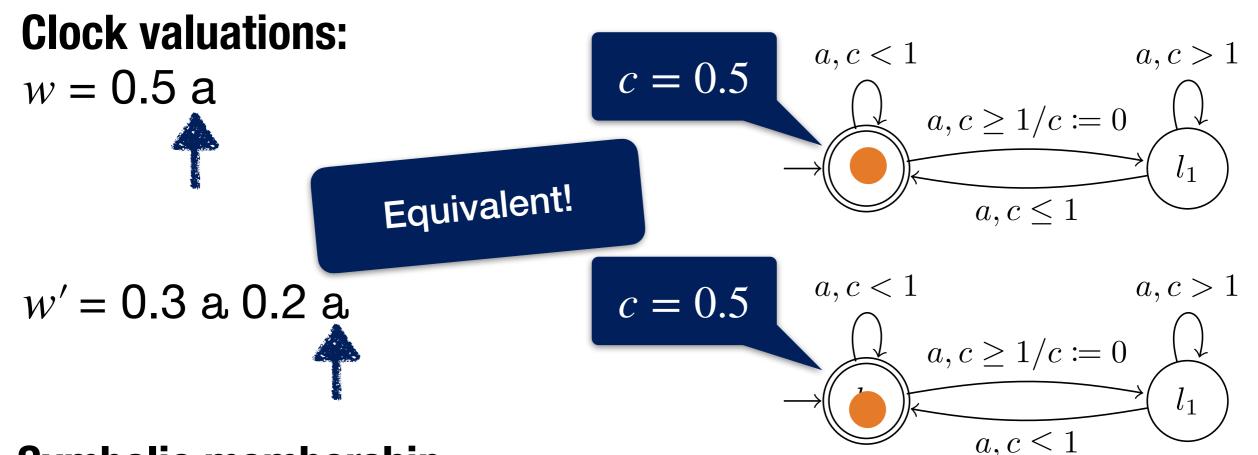
Challenge 3: Direct comparison is too fine



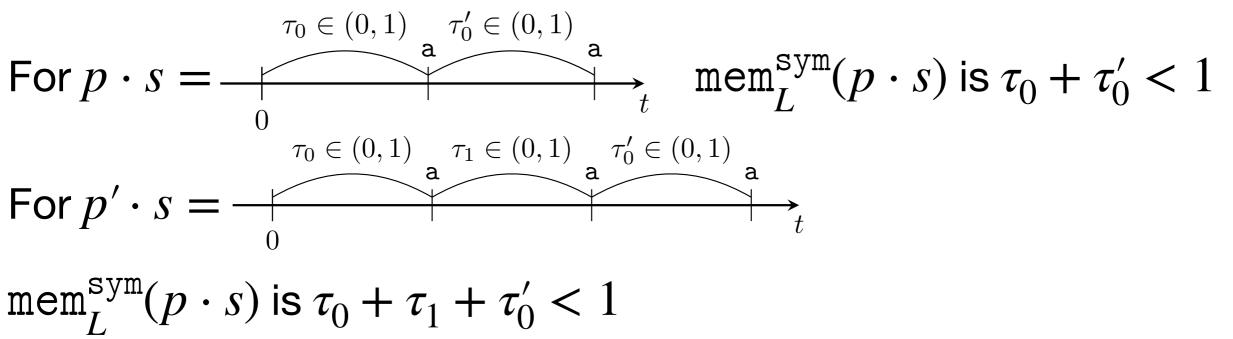
Challenge 3: Direct comparison is too fine



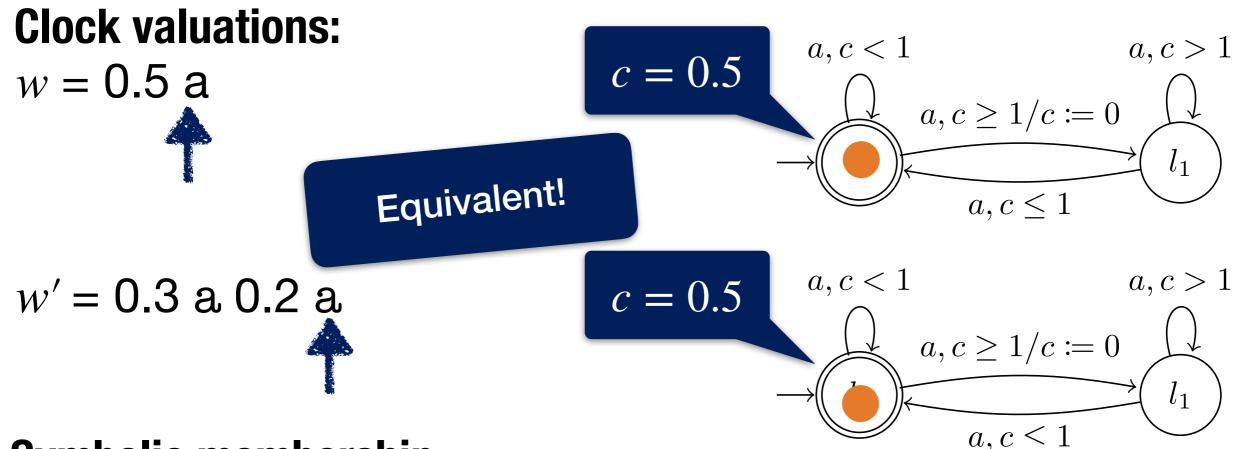
Challenge 3: Direct comparison is too fine



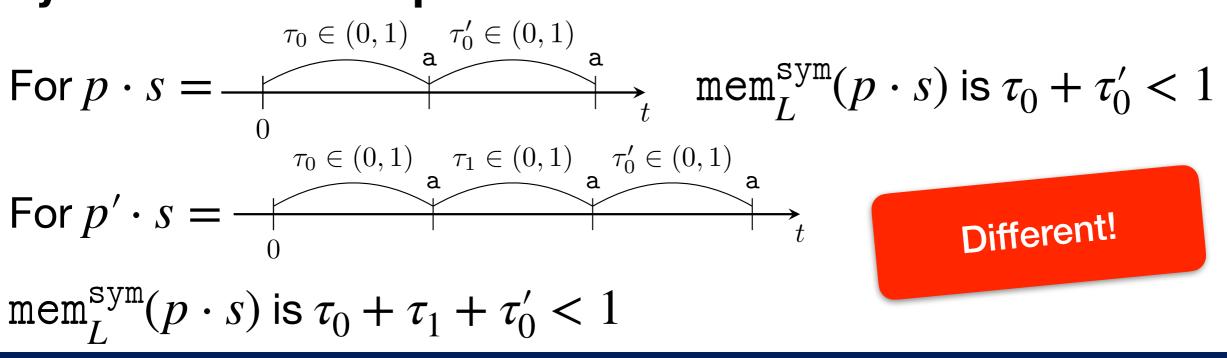
Symbolic membership:



Challenge 3: Direct comparison is too fine



Symbolic membership:



M. Waga (Kyoto U.)

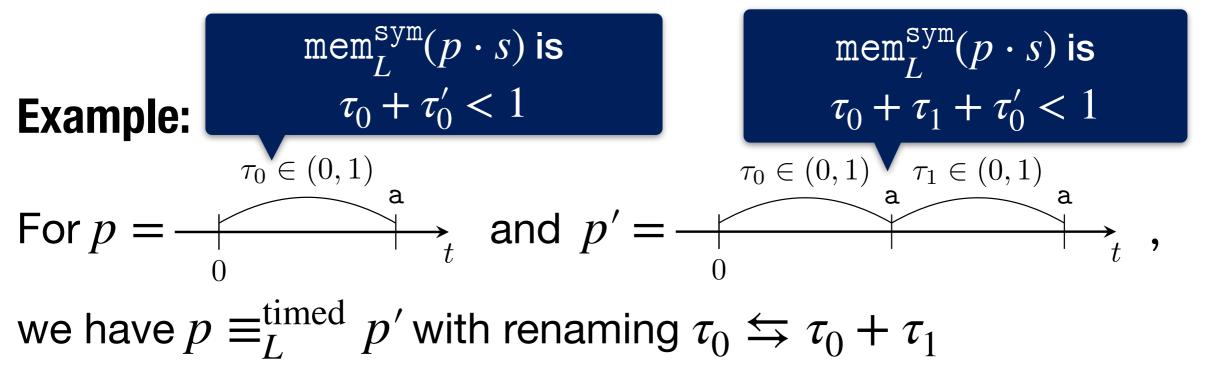
Gadget 3: Equivalence up to Renaming

Abstract the reset "position"

Def. For

- timed language: L
- (prefix) elementary lang.: p, p'

 $p \equiv_{L}^{\text{timed}} p'$ iff. for any (suffix) elementary lang. $s, \text{mem}_{L}^{\text{sym}}(p \cdot s)$ and $\text{mem}_{L}^{\text{sym}}(p' \cdot s)$ are equivalent up to some renaming



[Contribution]

Myhill-Nerode-Style Characterization

[Contribution]

Theorem

 \equiv_L^{timed} makes *finite* classes iff. L is recognizable by a DTA

Corollary The above classes are distinguishable by a *finite* set S of elementary lang.

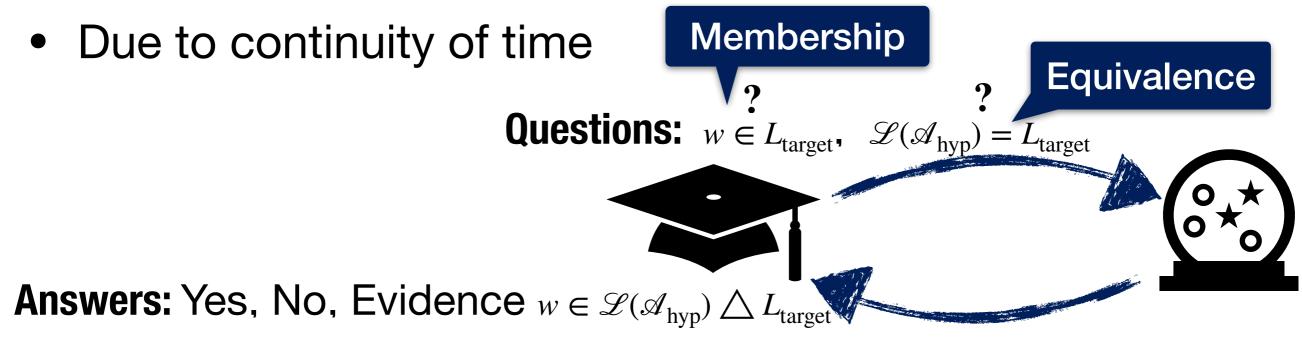
 \rightarrow We can learn a DTA via incremental construction of S

L*timed algorithm for Active DTA Learning

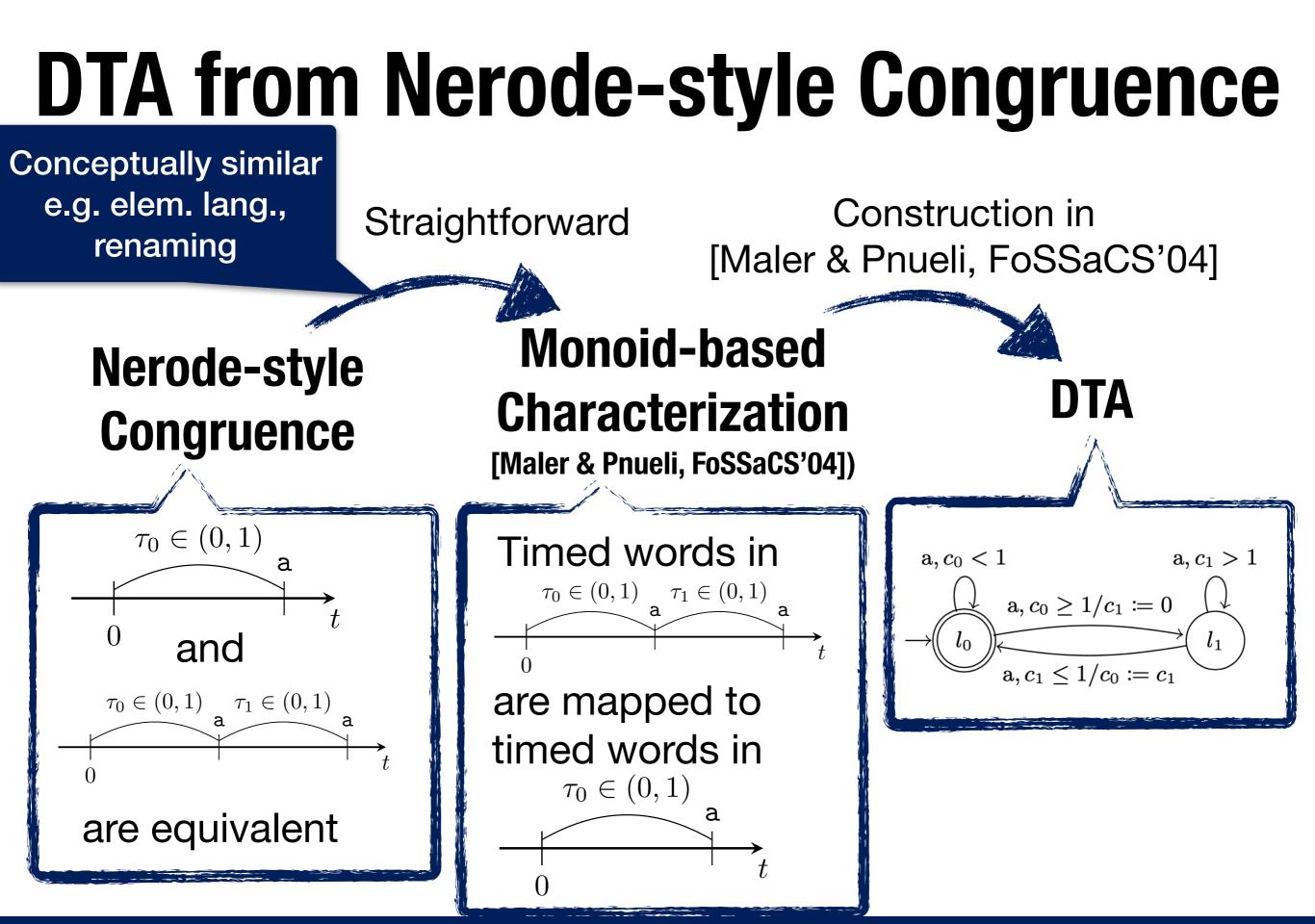
Outline is same as the L* for DFAs

Diff. 1: Use symbolic membership questions

- Achieved by finitely many membership questions
- Diff. 2: Search renaming to test equivalence
 - Exhaustive trial w/o additional questions (by memoization)
- **Diff. 3**: Definition of "contradiction" to refine P and S is changed

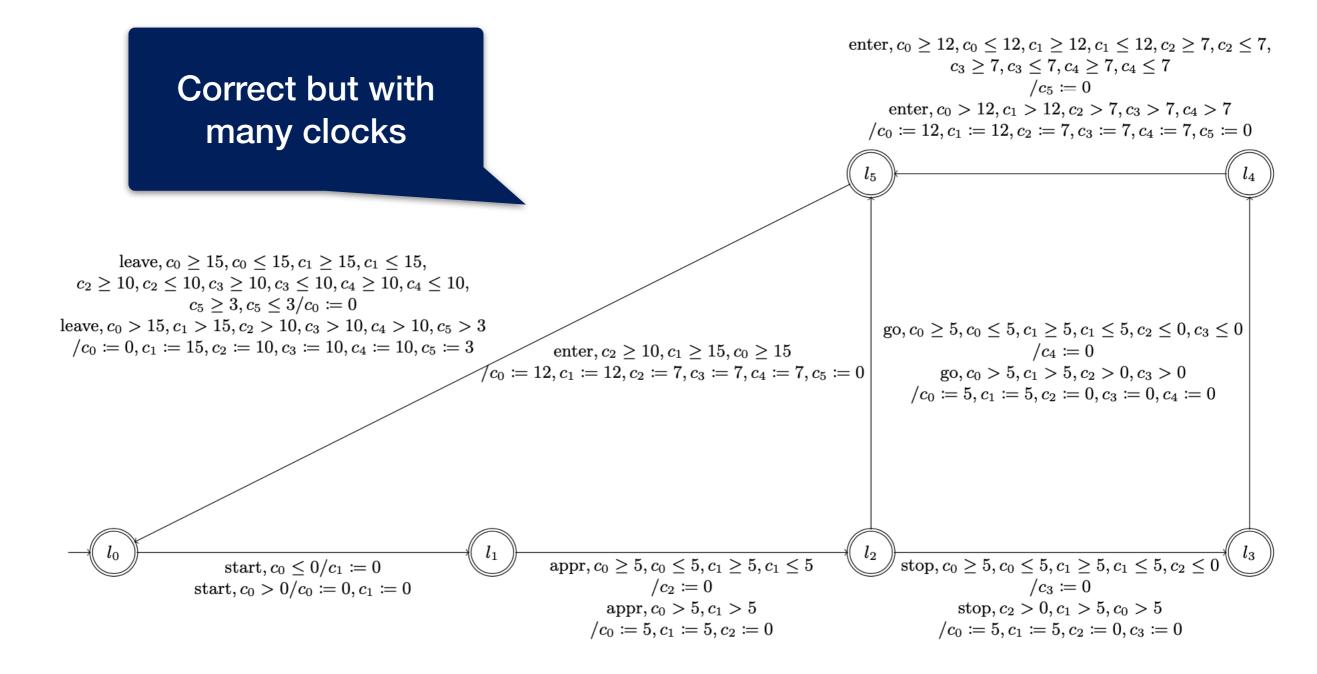


[Contribution]

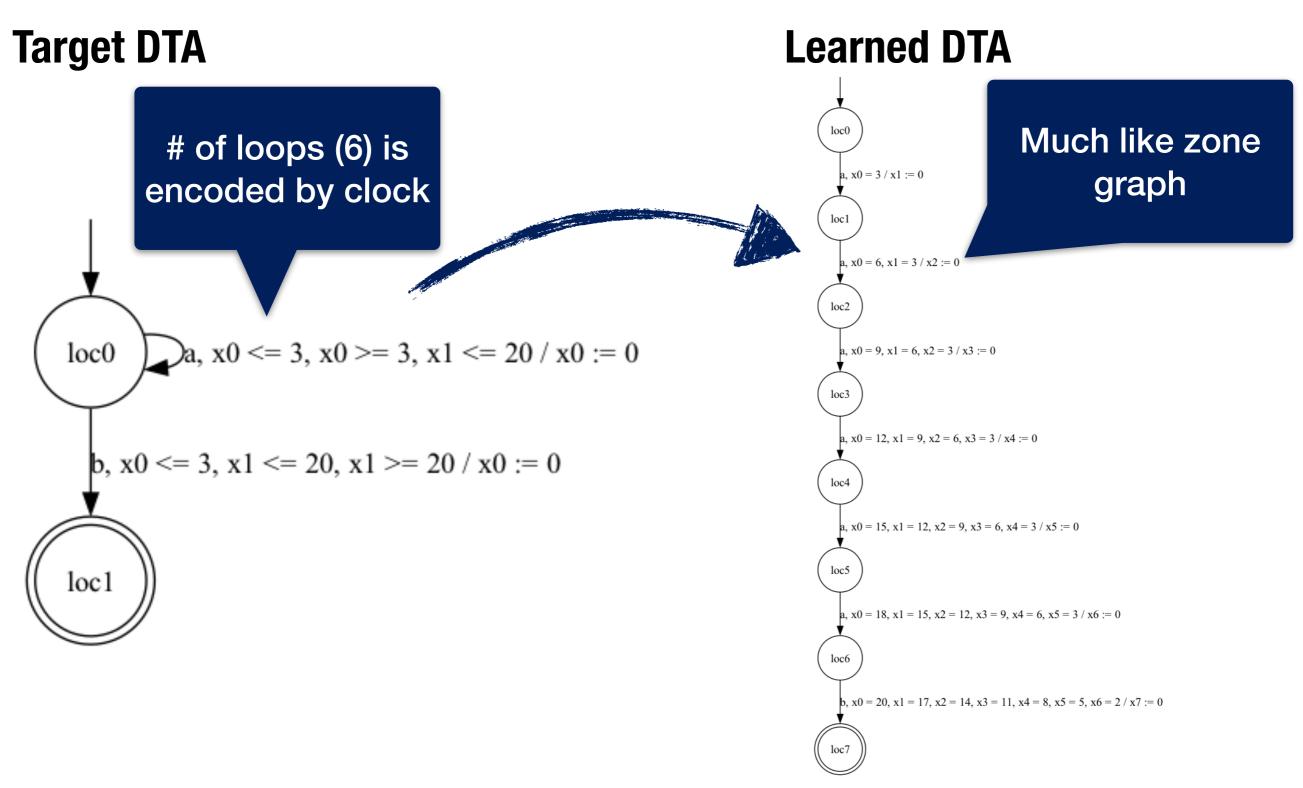


M. Waga (Kyoto U.)

But no optimization yet...



No minimality in DTA construction



This example is based on an input from Frits Vaandrager via private communication

M. Waga (Kyoto U.)

Correctness and Complexity

Theorem

For any DTA \mathscr{A}_{tgt} , L*_{timed} returns a DTA \mathscr{A}_{hyp} satisfying $\mathscr{L}(\mathscr{A}_{tgt}) = \mathscr{L}(\mathscr{A}_{hyp})$ with finite queries.

Correctness with finite queries

Theorem

The number of membership queries is singly exponential to $|Q_{tgt}|$ and doubly exponential to $|C_{tgt}|$.

- First exp. of $|C_{tgt}|$ is same as zone/region
- Another exp. to make symbolic membership
- The other part is polynomial (same as L*)

Outline

- Quick Review: L* algorithm for DFA learning
 - Focusing on Myhill-Nerode theorem & Nerode's congruence
- Active learning of timed lang. recognizable by DTAs
 - Myhill-Nerode-style characterization for timed lang.
 - How the algorithm is extended
- Experiments

Setting of Experiments

- Implemented L^*_{timed} in C++
- Show the results for 7 practical benchmarks taken from literature
 - The other results are in the paper
- Baseline: OneSMT (Xu et al., ATVA'22)
 - Outline is similar but dedicated to one-clock DTAs
 - Python implementation
- Intel Core i9-10980XE 125 GiB RAM with Ubuntu 20.04.5 LTS

of Membership Questions

L*timed requires more questions due to general setting

Only for one-clock DTAs	OneSMT	L* _{timed} (Ours)	
Auth. Key Man.	3,453	12,263	
Car Alarm Sys.	4,769	66,067	
Light	210	3,057	
Particle Cont.	10,390	245,134	
ТСР	4,713	11,300	
Train	838	13,487	
FDDI	N/A (7 clocks)	9,986,271	

M. Waga (Kyoto U.)

of Equivalence Questions

Characterization by \approx_L^S seems helpful to find contradictions

Only for one-clock DTAs	OneSMT	L* _{timed} (Ours)	
Auth. Key Man.	49	11	
Car Alarm Sys.	18	17	
Light	7	7	
Particle Cont.	29	23	
ТСР	32	15	
Train	13	8	
FDDI	N/A (7 clocks)	43	

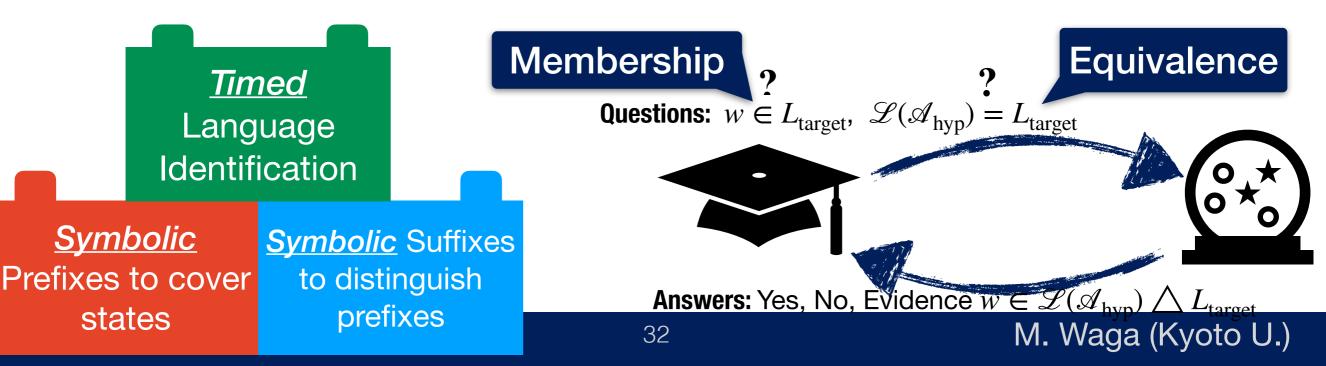
Execution Time

Perhaps C++ vs. Python but can be by less eq. queries

Only for one-clock DTAs	OneSMT	L* _{timed} (Ours)	
Auth. Key Man.	7.97 sec	0.585 sec	
Car Alarm Sys.	95.8 sec	4.65 sec	
Light	0.932 sec	0.0330 sec	
Particle Cont.	124 sec	64.9 sec	
TCP	22.0 sec	0.382 sec	
Train	1.13 sec	0.172 sec	
FDDI	N/A (7 clocks)	3000 sec	
	31	M. Waga (Kyoto U.)	

Conclusion

- Myhill-Nerode-style characterization to the timed languages recognizable by DTAs
 - Idea: symbolic handling of timing constraints
- L*-style learning algorithm for DTAs
- Implementation + experiments
 - → Works for some practical benchmarks, e.g., FDDI



Future Directions

- Comparison with the characterization with nominal sets
- Optimization of DTA construction
 - e.g. reduction of clocks
- Handling of I/O actions
 - action? and action!
- Combination with model checking for testing

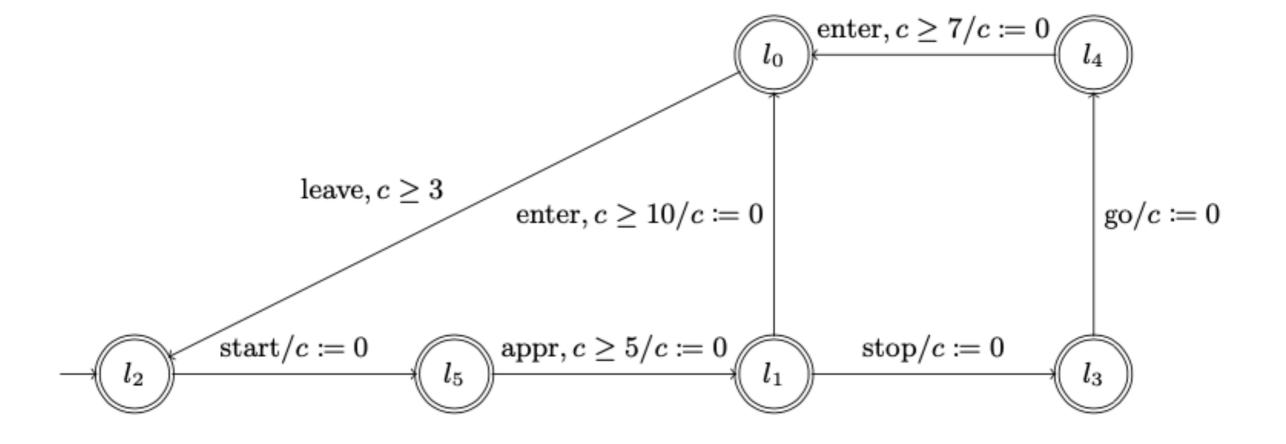
Appendix

Example

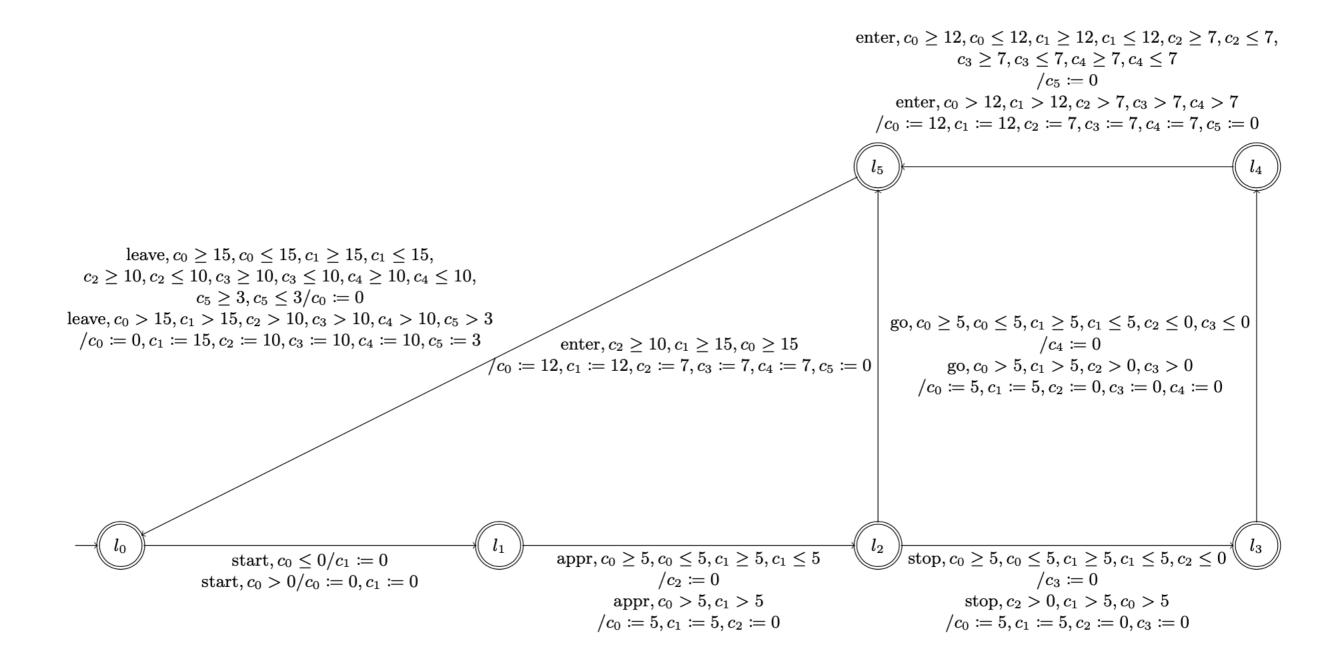
Observation Table

	$(\varepsilon, au_0' = 0)$	(a, $\tau'_1 = 0 < \tau'_0 < 1$)
$(arepsilon, au_0=0)$	Т	Т
$(arepsilon, au_0\in(0,1))$	Т	$\tau_0+\tau_0'\in(0,1)$
$(arepsilon, au_0=1)$	T	\perp
$(\mathrm{a},\tau_0=\tau_0+\tau_1=1\wedge\tau_1=0)$		Т
$(\mathrm{a},\tau_0=1\wedge\tau_1\in(0,1))$	\perp	$\tau_1+\tau_0'\in(0,1]$
$(a, \tau_0 = \tau_1 = 1 \land \tau_0 + \tau_1 = 2)$	\perp	\perp
$(a, au_0 = au_0 + au_1 = au_1 = 0)$	Т	Т
$(\mathrm{a}, au_0= au_0+ au_1\in (0,1)\wedge au_1=0)$	Т	$ au_0 + au_1 + au_0' \in (0, 1)$
$(arepsilon, au_0\in(1,2))$	Τ	\perp
$(\mathrm{aa}, au_0 = au_0 + au_1 = au_0 + au_1 + au_2 = 1 \wedge au_1 = au_2 = au_1 + au_2 = 0)$	T	Т
$(aa, \tau_0 = 1 \land \tau_1 = \tau_1 + \tau_2 \in (0, 1) \land \tau_0 + \tau_1 = \tau_0 + \tau_1 + \tau_2 \in (1, 2) \land \tau_2 = 0)$	Т	$\tau_1 + \tau_2 + \tau_0' \in (0, 1)$
$({\rm a},\tau_0=1<\tau_1<2<\tau_0+\tau_1<3)$	\perp	\perp
$(aa, \tau_0 = \tau_1 = \tau_1 + \tau_2 = 1 \land \tau_0 + \tau_1 = \tau_0 + \tau_1 + \tau_2 = 2 \land \tau_2 = 0)$	Τ	\perp

Example: Train (Target)



Example: Train (Learned)



Summary of Experiment

		L	$ \Sigma $	C	K_C	# of Mem. queries	# of Eq. queries	Exec. time [sec.]
AKM	LEARNTA	17	12	1	5	12,263	11	5.85e-01
	OneSMT	17	12	1	5	3,453	49	7.97e + 00
CAS	LEARNTA	14	10	1	27	66,067	17	$4.65e{+}00$
	OneSMT	14	10	1	27	4,769	18	$9.58e{+}01$
Light	LEARNTA	5	5	1	10	3,057	7	3.30e-02
Light	OneSMT	5	5	1	10	210	7	9.32e-01
PC	LEARNTA	26	17	1	10	245,134	23	6.49e+01
ГС	OneSMT	26	17	1	10	10,390	2010%2017%201%201%2010%2017%2 29	1.24e+02
ТСР	LEARNTA	22	13	1	2	11,300	15	3.82e-01
	OneSMT	22	13	1	2	4,713	32	$2.20e{+}01$
Train	LEARNTA	6	6	1	10	$13,\!487$	8	1.72e-01
	OneSMT	6	6	1	10	838	13	1.13e+00
FDDI	LEARNTA	16	5	7	6	9,986,271	43	3.00e + 03